若实数满足,求证:
已知函数 f x = 1 + c o t x sin2x+msin x + π 4 sin x - π 4 . (1)当 m=0 时,求 f x 在区间 π 8 . 3 π 4 上的取值范围; (2)当 tanα=2 时, f α = 3 5 ,求 m 的值.
设函数 f x = 2 x - 4 + 1 . (Ⅰ)画出函数 y = f x 的图像: (Ⅱ)若不等式 f x ≤ a x 的解集非空,求 n 的取值范围.
已知直线 C 1 : x = 1 + t cos α y = t sin α t 为常数 , C 2 : x = cos θ y = sin θ θ 为常数
I (当 a = π 3 时,求 C 1 与 C 2 的交点坐标, ( I I ) 过坐标原点O做 C 1 的垂线,垂足为 A 、 P 为 O A 的中点,当 a 变化时。
如图:已知圆上的弧 A C ¯ = B D ¯ ,过 C 点的圆的切线与 B A 的延长线交于 E 点,证明:
(Ⅰ) ∠ A C E = ∠ B C D . (Ⅱ) B C 2 = B E · C D .
设函数 f ( x ) = x ( e x - 1 ) - a x 2
(Ⅰ)若 a = 1 2 ,求 f ( x ) 的单调区间; (Ⅱ)若当 x ≥ 0 时 f ( x ) ≥ 0 ,求 a 的取值范围
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号