已知椭圆
.过点
作圆
的切线l交椭圆
于
两点.
(I)求椭圆
的焦点坐标和离心率;
(II)将
表示为
的函数,并求
的最大值.
如图,边长为4的正方形ABCD与矩形ABEF所在平面互相垂直,M,N分别为AE,BC的中点,AF=3.
(I)求证:DA⊥平面ABEF;
(Ⅱ)求证:MN∥平面CDFE;
(Ⅲ)在线段FE上是否存在一点P,使得AP⊥MN? 若存在,求出FP的长;若不存在,请说明理由.
已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=14.
(I)求{an}的通项公式;
(Ⅱ)若数列{bn}满足:…
,求{bn}的前n项和.
已知函数f(x)=2sinxcosx-2cos2x+l.
(I)求f(x)的最小正周期;
(Ⅱ)若∈(0,
),且f(
)=1,求
的值。
若无穷数列满足:①对任意
,
;②存在常数
,对任意
,
,则称数列
为“
数列”.
(Ⅰ)若数列的通项为
,证明:数列
为“
数列”;
(Ⅱ)若数列的各项均为正整数,且数列
为“
数列”,证明:对任意
,
;
(Ⅲ)若数列的各项均为正整数,且数列
为“
数列”,证明:存在
,数列
为等差数列.
已知椭圆上的点到其两焦点距离之和为
,且过点
.
(Ⅰ)求椭圆方程;
(Ⅱ)为坐标原点,斜率为
的直线过椭圆的右焦点,且与椭圆交于点
,
,若
,求△
的面积.