游客
题文

已知抛物线y1=x2+4x+1的图象向上平移m个单位(m>0)得到的新抛物线过点(1,8).
(1)求m的值,并将平移后的抛物线解析式写成y2=a(x﹣h)2+k的形式;
(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象.请写出这个图象对应的函数y的解析式,并在所给的平面直角坐标系中直接画出简图,同时写出该函数在﹣3<x≤时对应的函数值y的取值范围;
(3)设一次函数y3=nx+3(n≠0),问是否存在正整数n使得(2)中函数的函数值y=y3时,对应的x的值为﹣1<x<0,若存在,求出n的值;若不存在,说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,定义:若双曲线与它的其中一条对称轴y=x相交于A、B两点,则线段AB称为双曲线的对径.

(1)求双曲线的对径的长;
(2)若双曲线的对径的长是10,求k的值;
(3)仿照上述定义,定义双曲线的对径.

如图,在中,,点的延长线上,且,过作BEAC,与的垂线交于点

(1)求证:.
(2)可由旋转得到,请用直尺和圆规作出旋转中心(保留作图痕迹,不写作法).

(1)计算:
(2)解方程组:

把两块全等的直角三角形叠放在一起,使三角板的锐角顶点与三角板的斜边中点重合,其中,把三角板固定不动,让三角板绕点旋转,设射线与射线相交于点,射线与线段相交于点

(1)如图1,当射线经过点,即点与点重合时,易证.此时,      ;将三角板由图1所示的位置绕点沿逆时针方向旋转,设旋转角为.其中,问的值是否改变?答:      (填“会”或“不会”);若改变,的值为      (不必说明理由);
(2)在(1)的条件下,设,两块三角板重叠面积为,求的函数关系式.(图2,图3供解题用)

某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,对往年的市场行情和生产情况进行了调查,提供了如下两个信息图,如甲、乙两图。
注:甲、乙两图中的A、B、C、D、E、F、G、H所对应的纵坐标分别指相应月份每千克该种蔬菜的售价和成本(生产成本6月份最低,甲图的图象是线段,乙图的图象是抛物线的一部分)。请你根据图象提供的信息说明:

(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价-成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?最大收益是多少?说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号