游客
题文

(本小题满分12分)
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(I)假设n=2,求第一大块地都种植品种甲的概率;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:

品种甲
403
397
390
404
388
400
412
406
品种乙
419
403
412
418
408
423
400
413

分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据的的样本方差,其中为样本平均数.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,是圆的直径,点在圆上,于点
平面
(1)证明:
(2)求平面与平面所成的锐二面角的余弦值.

按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动). 该校高2010级一班50名学生在上学期参加活动的次数统计如图所示.
(I)求该班学生参加活动的人均次数;(II)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率
(III)从该班中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望

已知各项都不相等的等差数列的前六项和为60,且的等比中项.
(I)求数列的通项公式
(II)若数列的前n项和.

已知函数的导函数是处取得极值,且.
(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;
(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断的大小关系,并说明理由.

已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2为正三角形,且以线段F1F2为直径的圆与直线相切.
(Ⅰ)求椭圆C的方程和离心率e;
(Ⅱ)若点P为焦点F1关于直线的对称点,动点M满足. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号