已知函数
的最小正周期为
.
(Ⅰ)求
的值;
(Ⅱ)讨论
在区间
上的单调性.
已知
是由非负整数组成的无穷数列,该数列前
项的最大值记为
,第n项之后各项
,
…的最小值记为
,
.
(1)若
为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意
,
),写出
,
,
,
的值;
(2)设d为非负整数,证明:
(
)的充分必要条件为{an}为公差为d的等差数列;
(3)证明:若
,
,则
的项只能是1或2,且有无穷多项为1.
已知
是椭圆
上的三个点,
是坐标原点.
(I)当点
是
的右顶点,且四边形
为菱形时,求此菱形的面积.
(II)当点
不是
的顶点时,判断四边形
是否可能为菱形,并说明理由.
设
为曲线
在点(1,0)处的切线.
(I)求
的方程;
(II)证明:除切点(1,0)之外,曲线
在直线
的下方.
如图,在三棱柱
中,
是边长为4的正方形.平面
平面
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)证明:在线段
存在点
,使得
,并求
的值.