已知点,
是平面内一动点,直线
、
斜率之积为
。
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)过点作直线
与轨迹
交于
两点,线段
的中点为
,求直线
的斜率
的取值范围。
为了拓展网络市场,腾讯公司为用户推出了多款
应用,如“
农场”、“
音乐”、“
读书”等.某校研究性学习小组准备举行一次“
使用情况”调查,从高二年级的一、二、三、四班中抽取10名学生代表参加,抽取不同班级的学生人数如下表所示:
班级 |
一班 |
二班 |
三班 |
四班 |
人数 |
2人 |
3人 |
4人 |
1人 |
(1)从这10名学生中随机选出2名,求这2人来自相同班级的概率;
(2) 假设在某时段,三名学生代表甲、乙、丙准备分别从农场、
音乐、
读书中任意选择一项,他们选择
农场的概率都为
;选择
音乐的概率都为
;选择
读书的概率都为
;他们的选择相互独立.设在该时段这三名学生中选择
读书的总人数为随机变量
,求随机变量
的分布列及数学期望
.
在直角梯形PBCD中A为PD的中点,如下左图。,将
沿AB折到
的位置,使
,点E在SD上,且
,如下右图。
(1)求证:平面ABCD;(2)求二面角E—AC—D的正切值.
已知等差数列是递增数列,且满
(1)求数列的通项公式;
(2)令,求数列
的前
项和
已知函数.
(1)求的值;
(2)求的最大值及相应
的值.
已知(m为常数,m>0且m≠1).
设(n∈
)是首项为m2,公比为m的等比数列.
(1)求证:数列是等差数列;
(2)若,且数列
的前n项和为Sn,当m=2时,求Sn;
(3)若,问是否存在m,使得数列
中每一项恒小于它后面的项?若存在,求出m的范围;若不存在,请说明理由.