(本小题满分12分)
某医院计划从10名医生(7男3女)中选5人组成医疗小组下乡巡诊.
(I)设所选5人中女医生的人数为,求
的分布列及数学期望;
(II)现从10名医生中的张强、李军、王刚、赵永4名男医生,李莉、孙萍2名女医生共6人中选一正二副3名组长,在张强被选中的情况下,求李莉也被选中的概率.
已知椭圆的左焦点为
,右焦点为
,离心率
.过
的直线交椭圆于
、
两点,且
的周长为
.
(1)求椭圆的方程;
(2)设动直线与椭圆
有且只有一个公共点
,且与直线
相交于点
.求证:以
为直径的圆恒过一定点
.并求出点
的坐标.
给定直线,抛物线
(1)当抛物线的焦点在直线
上时,求
的值;
(2)若的三个顶点都在(1)所确定的抛物线
上,且点
的纵坐标
,
的重心恰是抛物线
的焦点
,求直线
的方程.
已知数列的前
项和为
,且
,
,数列
满足
.
(1)求的表达式;
(2)求数列的前
项和
.
已知一圆经过点,
,且它的圆心在直线
上.
(1)求此圆的方程;
(2)若点为所求圆上任意一点,且点
,求线段
的中点
的轨迹方程.
(本小题满分13分)已知△的两个顶点
的坐标分别是
,且
所在直线的斜率之积等于
.
(1)求顶点的轨迹
的方程,并判断轨迹
为何种曲线;
(2)当时,点
为曲线 C上点, 且点
为第一象限点,过点
作两条直线与曲线C交于
两点,直线
斜率互为相反数,则直线EF斜率是否为定值,若是,求出定值,若不是,请说明理由.