(Ⅰ)(Ⅱ)两道题普通班可以任意选择一道解答,实验班必做(Ⅱ)题
(Ⅰ)已知等比数列中,
,公比
。
(1)为
的前
项和,证明:
(2)设,求数列
的通项公式.
(Ⅱ)设正数数列{an}的前n项和为Sn满足Sn= (an+1)
(n∈N*).
(1)求出数列{an}的通项公式。
(2)设,记数列{bn}的前n项和为
,求
如图,已知椭圆,
是长轴的左、右端点,动点
满足
,联结
,交椭圆于点
.
(1)当,
时,设
,求
的值;
(2)若为常数,探究
满足的条件?并说明理由;
(3)直接写出为常数的一个不同于(2)结论类型的几何条件.
定义:设分别为曲线
和
上的点,把
两点距离的最小值称为曲线
到
的距离.
(1)求曲线到直线
的距离;
(2)若曲线到直线
的距离为
,求实数
的值;
(3)求圆到曲线
的距离.
设正四棱锥的侧面积为
,若
.
(1)求四棱锥的体积;
(2)求直线与平面
所成角的大小.
设是方程
的一个根.
(1)求;
(2)设(其中
为虚数单位,
),若
的共轭复数
满足
,求
.
在直角坐标系中,设动点
到定点
的距离与到定直线
的距离相等,记
的轨迹为
.又直线
的一个方向向量
且过点
,
与
交于
两点,求
的长.