游客
题文

已知数列的前n项和为,并且满足
(1)求的通项公式;
(2)令,问是否存在正整数,对一切正整数,总有,若存在,求的值;若不存在,说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分7分)选修4—2:矩阵与变换
在平面直角坐标系中,矩阵对应的变换将平面上的任意一点变换为点
(Ⅰ)求矩阵的逆矩阵
(Ⅱ)求圆在矩阵对应的变换作用后得到的曲线的方程.

(本小题满分14分)已知函数
(Ⅰ)讨论函数的单调性;
(Ⅱ)若,数列满足
(1)若首项,证明数列为递增数列;
(2)若首项为正整数,且数列为递增数列,求首项的最小值.

(本小题满分13分)如图,菱形的边长为,现将沿对角线折起至位置,并使平面平面

(1)求证:
(2)在菱形中,若,求直线与平面所成角的正弦值;
(3)求四面体体积的最大值.

(本小题满分13分) 在平面直角坐标系中,点与点关于原点对称,是动点,且直线的斜率之积等于
(1)求动点的轨迹方程;
(2)设直线与直线分别交于两点,问:是否存在点使得的面积相等?若存在,求出点的坐标;若不存在,请说明理由.

(本小题满分13分)某同学用“五点法”画函数)在某一个周期内的图像时,列表并填入的部分数据如下表:




















(1)请求出上表中的的值,并写出函数的解析式;
(2)将的图像向右平移个单位得到函数的图像,若函数在区间)上的图像的最高点和最低点分别为,求向量夹角的大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号