(本小题满分14分)
已知函数f(x)=-x3+bx2+cx+bc,
(1)若函数f(x)在x=1处有极值-,试确定b、c的值;
(2)在(1)的条件下,曲线y=f(x)+m与x轴仅有一个交点,求实数m的取值范围;
(3)记g(x)=|f′( x)|(-1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.
(参考公式:x3-3bx2+4b3=(x+b)(x-2b)2)
已知斜三棱柱的底面是直角三角形,
,侧棱与底面所成角为
,点
在底面上射影D落在BC上.
(Ⅰ)求证:平面
;
(Ⅱ)若点D恰为BC中点,且,求
的大小;
(III)若,且当
时,求二面角
的大小.
设、
、
分别是△ABC三个内角
A、
B、
C的对边,若向量
,
且
.
(Ⅰ)求的值;
(Ⅱ)求的最大值.
已知点P到两个定点M(-1,0)、N(1,0)距离的比为,点N到直线PM的距离为1,求直线PN的方程.
已知函数.
(Ⅰ) 若,求函数
的单调区间;
(Ⅱ)若函数的图像在点
处的切线的斜率是1,问:
在什么范围取值时,对于任意的
,函数
在区间
上总存在极值?
已知数列满足
,
.
(Ⅰ) 求数列{的前
项和
;
(Ⅱ)若存在,使不等式
成立,求实数
的取值范围.