(本小题满分12分)已知函数
(
>0),若函数
的最小正周期为
.
(1)求
的值,并求函数
的最大值
(2)若0<x<
,当f(x)=
时,求
的值
已知二次函数
同时满足:
①不等式
的解集有且只有一个元素;
②在定义域内存在
,使得不等式
成立.
数列
的通项公式为
.
(1)求函数
的表达式;
(2)求数列
的前
项和
.
已知函数
,
.
(1)当
时,求
在
处的切线方程;
(2)若
在
内单调递增,求
的取值范围.
在锐角
内角
、
、
所对的边分别为
、
、
.已知
,
.
求:(1)
外接圆半径;
(2)当
时,求
的大小.
已知函数
,(其中常数
).
(1)当
时,求
的极大值;
(2)试讨论
在区间
上的单调性;
(3)当
时,曲线
上总存在相异两点
、
,使得曲线
在点
、
处的切线互相平行,求
的取值范围.
已知曲线
,过
上一点
作一斜率为
的直线交曲线
于另一点
(
且
,点列
的横坐标构成数列
,其中
.
(1)求
与
的关系式;
(2)令
,求证:数列
是等比数列;
(3)若
(
为非零整数,
),试确定
的值,使得对任意
,都有
成立.