(本小题满分14分)
从某学校高一年级名学生中随机抽取
名测量身高,据测量被抽取的学生的身高全部介于
和
之间,将测量结果按如下方式分成八组:第一组
.第二组
;…第八组
,右图
是按上述分组方法得到的条形图.
(1)根据已知条件填写下面表格:
组 别 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
样本数 |
|
|
|
![]() |
|
|
|
|
(2)估计这所学校高一年级名学生中身高在
以上(含
)的人数;
(3)在样本中,若第二组有人为男生,其余为女生,第七组有
人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?
(本小题满分12分)
一缉私艇A发现在北偏东方向,距离12 nmile的海面上有一走私船C正以10 nmile/h的速度沿东偏南
方向逃窜.缉私艇的速度为14 nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东
的方向去追,.求追及所需的时间和
角的正弦值.
(本小题满分12分)
在中,
分别是角A、B、C的对边,且
(1)求角B的大小;
(2)若,求
的面积.
已知数列{an}的前n项和,
(1)求数列{an}的通项公式;
(2)求前n项和的最大值,并求出相应的
的值.
(本小题满分12分)
在△ABC中,已知,c=1,
,求A ,C, a.
已知是定义在
上的奇函数,当
时,
(1)求的解析式;
(2)是否存在负实数,使得当
的最小值是4?如果存在,求出
的值;如果不存在,请说明理由.
(3)对如果函数
的图像在函数
的图像的下方,则称函数
在D上被函数
覆盖.求证:若
时,函数
在区间
上被函数
覆盖.