(本小题满分14分)
如图,直二面角中,四边形
是正方形,
为CE上的点,且
平面
.
(1)求证:平面
;
(2)求二面角的余弦值.
如图,三棱柱中,
平面
,
,
, 点
在线段
上,且
,
.
(Ⅰ)求证:直线与平面
不平行;
(Ⅱ)设平面与平面
所成的锐二面角为
,若
,求
的长;
(Ⅲ)在(Ⅱ)的条件下,设平面平面
,求直线
与
所成的角的余弦值.
已知数列的前
项和为
,且
.
(1)求的通项公式;
(2)设,若
恒成立,求实数
的取值范围;
(3)设,
是数列
的前
项和,证明
.
设函数,
(Ⅰ)求的最大值,并写出使
取最大值时x的集合;
(Ⅱ)已知中,角A、B、C的对边分别为a、b、c,若
,
,求
的面积的最大值.
已知函数,设
且
.
(1)证明:,且
;
(2)若对任意满足条件的
,
恒成立,求实数
的最大值.
已知函数.
(1)求的单调区间;
(2)若方程有四个不等实根,求实数
的取值范围.