.设数列的前
项和为
,且
.
(1)求数列的通项公式;
(2)设,数列
的前
项和为
,求证:
.
(本小题满分10分)如图,的半径
垂直于直径
,
为
上一点,
的延长线交
于
,过
点的切线交
的延长线于
。
(1)求证:;
(2)若的半径为
,
.求:
的长。
(本小题满分12分) 已知函数.
(1)求函数的最大值;
(2)求证:
(3)当时,求证:
.
(本小题满分12分)过椭圆的右焦点
作斜率
的直线交椭圆于
两点,且
与
共线.
(1)求椭圆的离心率;
(2)设为椭圆上任意一点,且
,证明:
为定值。
(本小题满分12分)如图,正方形所在平面与等腰三角形
所在平面相交于
平面
.
(1)求证:平面
;
(2)设是线段
上一点,当直线
与平面
所成角的正弦值为
时,试确定点
的位置.
(本小题满分12分)为了促进学生的全面发展,贵州某中学重视学生社团文化建设,2014年该校某新生确定争取进入曾获团中央表彰的“海济社”和“话剧社”。已知该同学通过考核选拨进入两个社团成功与否相互独立,根据报名情况和他本人的才艺能力,两个社团都能进入的概率为,至少进入一个社团的概率为
,并且进入“海济社”的概率小于进入“话剧社”的概率。
(1)求该同学分别通过选拨进入“海济社”的概率和进入“话剧社”的概率
;
(2)学校根据这两个社团的活动安排情况,对进入“海济社”的同学增加1个校本选修课学分,对进入“话剧社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修加分分数的分布列和数学期望。