游客
题文

如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)
(1)求抛物线的解析式
(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.
(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

把一堆苹果分给几个孩子,如果每人分3个,那么多8个。如果前面每人分5个,那么最后一人得到的苹果不足3个,问有几个孩子?有多少个苹果?

已知关于xy的方程组.
(1)求这个方程组的解;
(2)当m取何值时,这个方程组的解中,x大于1,y不小于-1.

为了加强人们的节水意识,合理利用水资源,某市采用价格调控手段达到目的。规定:每户居民每月用水不超过6吨时,按基本价格收费;超过6吨时,超过部分要加价收费。该市某户居民今年3、4月份的用水量和收费如下表所示,试求用水收费的两种价格。

月份
用水量(单位:吨)
水费(单位:元)
3
8
28
4
9
33

如图,在直角梯形ABCD中,∠D =∠BCD = 90°,∠B = 60°,AB = 6,AD = 9,点ECD上的一个动点(E不与D重合),过点EEFAC,交AD于点F(当E运动到C时,EFAC重合),把△DEF沿着EF对折,点D的对应点是点G,如图①.

⑴ 求CD的长及∠1的度数;
⑵ 设DE = x,△GEF与梯形ABCD重叠部分的面积为y.求yx之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?
⑶ 当点G刚好落在线段BC上时,如图②,若此时将所得到的△EFG沿直线CB向左平移,速度为每秒1个单位,当E点移动到线段AB上时运动停止.设平移时间为t(秒),在平移过程中是否存在某一时刻t,使得△ABE为等腰三角形?若存在,请直接写出对应的t的值;若不存在,请说明理由.

如图1,将底面为正方形的两个完全相同的长方体铁块放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm3/s,直至水面与长方体顶面平齐为止.水槽内的水深h(cm)与注水时间t(s)的函数关系如图2所示.根据图象完成下列问题:

(1)一个长方体的体积是cm3
(2)求图2中线段AB对应的函数关系式;
(3)求注水速度v和圆柱形水槽的底面积S

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号