我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会。现有A型、B型、C型三种汽车可供选择。已知每种型号汽车可同时装运2种土特产,且每辆车必须装满。根据下表信息,解答问题。
|
![]() |
苦荞茶 |
青花椒 |
野生蘑菇 |
|
每 辆 汽 车 运 载 量 |
(吨) |
A型 |
![]() |
2 |
|
B型 |
4 |
|
2 |
||
C型 |
|
1 |
6 |
车型 |
A |
B |
C |
每辆车运费(元) |
1500 |
1800 |
2000 |
(1) 设A型汽车安排辆,B 型汽车安排
辆,求
与
之间的函数关系式。
(2) 如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案。
(3) 为节约运费,应采用(2)中哪种方案?并求出最少运费。
如图,已知AB⊥BD,CD⊥BD.
(1)若AB=16,CD=9,BD=15,请问在BD上是否存在P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;
(2)若AB=16,CD=9,BD=24,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(3)若AB=m,CD=n,BD=,请问在m、n、
满足什么关系时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的三个P点?
(本小题满分8分)如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,,
.△ADP沿点A旋转至△ABP’,连结PP’,并延长AP与BC相交于点Q.
(1)求证:△APP’是等腰直角三角形;
(2)求∠BPQ的大小;
(3)求CQ的长.
(本小题满分6分)如图,△ABC中,CD是边AB上的高,且.
(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.
(本小题满分8分)如图,已知锐角△ABC(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)条件下,若BC=5,AD=4, tan∠BAD=,求DC的长.
如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cosA=.
(1)求线段CD的长;
(2)求sin∠DBE的值.