(本小题满分8分)如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,,
.△ADP沿点A旋转至△ABP’,连结PP’,并延长AP与BC相交于点Q.
(1)求证:△APP’是等腰直角三角形;
(2)求∠BPQ的大小;
(3)求CQ的长.
先化简,再求值:,其中a2+3a﹣1=0.
如图,在直角坐标系xOy中,一次函数y=﹣x+m(m为常数)的图象与x轴交于A(﹣3,0),与y轴交于点C.以直线x=﹣1为对称轴的抛物线y=ax+bx+c(a,b,c为常数,且a>0)经过A,C两点,与x轴正半轴交于点B.
(1)求一次函数及抛物线的函数表达式.
(2)在对称轴上是否存在一点P,使得△PBC的周长最小?若存在,请求出点P的坐标.
(3)点D是线段OC上的一个动点(不与点O、点C重合),过点D作DE‖PC交x轴于点E,连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.
某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?
马航MH370失联后,我国政府积极参与搜救.某日,我两艘专业救助船A、B同时收到有关可疑漂浮物的讯息,可疑漂浮物P在救助船A的北偏东53.50°方向上,在救助船B的西北方向上,船B在船A正东方向140海里处.(参考数据:sin36.5°≈0.6,cos36.5°≈0.8,tan36.5°≈0.75).
(1)求可疑漂浮物P到A、B两船所在直线的距离;
(2)若救助船A、救助船B分别以40海里/时,30海里/时的速度同时出发,匀速直线前往搜救,试通过计算判断哪艘船先到达P处.
在一次青年歌手演唱比赛中,评分办法采用五位评委现场打分,每位选手的最后得分为去掉最高分、最低分后的平均数.评委给1号选手的打分是:9.5分,9.3分,9.8分,8.8分,9.4分.
(1)求1号选手的最后得分;
(2)节目组为了增加的节目观赏性,设置了一个亮分环节:主持人在公布评委打分之前,选手随机请两位评委率先亮出他的打分.请用列表法或画树状图的方法求“1号选手随机请两位评委亮分,刚好一个是最高分、一个是最低分”的概率.