如图,一次函数的图象与反比例函数y1=" –" ( x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<–1时,一次函数值大于反比例函数的值,当x>–1时,一次函数值小于反比例函数值.
(1) 求一次函数的解析式;
(2) 设函数y2= (x>0)的图象与y1=" –" (x<0)的图象关于y轴对称.在y2= (x>0)的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.
![]() |
观察下列等式:,
,
,将以上三个等式相加得:
1-
+
-
+
-
=1-
=
。
(1)猜想并写出:=.
(2)直接写出结果:+…+
.
.有理数a、b所表示的点在数轴上的位置如图所示,请在数轴上标出它们的相反数,并将这四个数及0按从小到大的顺序用“<”连接起来.
.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师。如果规定向东为正,向西为负,出租车的行程如下(单位:千米):
+15,-4,+13,―10,―12,+3,―13,―17
(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?
(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?
(本小题满分12分)如图,抛物线y=Ax2+C(A≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.
(1)求此抛物线的表达式;
(2)求证:AO=AM;
(3)探究:
①当k=0时,直线y=kx与x轴重合,求出此时的值;
②试说明无论k取何值,的值都等于同一个常数.
(本小题满分12分)对于二次函数y=x²-3x+2和一次函数y=-2x+4,把y=t(x²-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(-1,n),请完成下列任务:
【尝试】
(1)当t=2时,抛物线y=t(x²-3x+2)+(1-t)(-2x+4)的顶点坐标为 ;
(2)判断点A是否在抛物线L上;
(3)求n的值;
【发现】
通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为 .
【应用】
二次函数是二次函数y=x²-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由