第一题满分4分,第二题满分4分,第三题满分6分.
甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将4张扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张。
(1)设分别表示甲、乙抽到的牌的数字(方片4用4’表示,红桃2,红
桃3,红桃4分别用2,3,4表示),写出甲乙二人抽
到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?
(3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;若甲抽到的牌的牌面数字不比乙大,则乙胜。你认为此游
戏是否公平,说明你的理由。
已知椭圆经过点
,其离心率为
,经过点
,斜率为
的直线
与椭圆
相交于
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)设椭圆与
轴正半轴、
轴正半轴分别相交于
两点,则是否存在常数
,使得向量
与
共线?如果存在,求
值;如果不存在,请说明理由.
数列首项
,前
项和
与
之间满足
.
(Ⅰ)求证:数列是等差数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)设存在正数,使
对
都成立,求
的最大值.
如图,是等腰直角三角形,
,
,
分别为
的中点,沿
将
折起,得到如图所示的四棱锥
.
(Ⅰ)在棱上找一点
,使
∥平面
;
(Ⅱ)当四棱锥的体积取最大值时,求平面
与平面
夹角的余弦值.
已知函数,其中
(Ⅰ)求函数的定义域;
(Ⅱ)若对任意恒有
,试确定
的取值范围.
设函数
(Ⅰ)求的最小正周期及值域;
(Ⅱ)已知中,角
的对边分别为
,若
,
,
,求
的面积.