第一题满分4分,第二题满分4分,第三题满分6分.
甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将4张扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张。
(1)设分别表示甲、乙抽到的牌的数字(方片4用4’表示,红桃2,红
桃3,红桃4分别用2,3,4表示),写出甲乙二人抽
到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?
(3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;若甲抽到的牌的牌面数字不比乙大,则乙胜。你认为此游
戏是否公平,说明你的理由。
某示范性高中的校长推荐甲、乙、丙三名学生参加某大学自主招生考核测试,在本次考核中只有合格和优秀两个等级.若考核为合格,授予10分降分资格;考核为优秀,授予20分降分资格.假设甲、乙、丙考核为优秀的概率分别为、
、
,他们考核所得的等级相互独立.
(1)求在这次考核中,甲、乙、丙三名学生至少有一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名学生所得降分之和为随机变量ξ,求随机变量ξ的分布列和数学期望.
在△ABC中,角所对的边分别是
,且满足:
又
.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求△ABC的面积S.
(本小题满分7分)选修4—5:不等式选讲
已知定义在R上的函数的最小值为
.
(Ⅰ)求的值;
(Ⅱ)若为正实数,且
,求证:
.
(本小题满分7分)《选修4-4:坐标系与参数方程》
已知曲线的参数方程:
(
为参数), 曲线
上的点
对应的参数
,以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)已知直线过点
,且与曲线
于
两点,求
的范围.
(本小题满分7分)选修4—2:矩阵与变换
已知2×2矩阵M=有特征值λ=-1及对应的一个特征向量e1=
.
(Ⅰ)求矩阵M.
(Ⅱ)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.