要将两种厚度、材质相同,大小不同的钢板截成、
、
三种规格的成品.每
张钢板可同时截得三种规格的块数如下表:
每张钢板的面积:第一张为,第二张为
.今需要
、
、
三种规格的成品各为12、15、27块.则两种钢板各截多少张,可得所需三种规格的成品,且使所用钢板的面积最少?
甲、乙两个盒子中各有3个球,其中甲盒中有2个黑球1个白球,乙盒中有1个黑球2个白球,所有球之间只有颜色区别.
(Ⅰ)若从甲、乙两个盒子中各取一个球,求取出的2个球颜色相同的概率;
(Ⅱ)将这两个盒子中的球混合在一起,从中任取2个,求取出的2个球中至少有一个黑球的概率.
设.
(1)解不等式;
(2)若对任意实数,
恒成立,求实数a的取值范围.
已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线
的极坐标方程为
.
(1)求的直角坐标方程;
(2)直线(
为参数)与曲线C交于
,
两点,与
轴交于
,求
的值.
已知向量,
,设函数
.
(Ⅰ)求函数的解析式,并求
在区间
上的最小值;
(Ⅱ)在中,
分别是角
的对边,
为锐角,若
,
,
的面积为
,求
.
已知矩阵A=有一个属于特征值1的特征向量
.
(Ⅰ) 求矩阵A;
(Ⅱ) 若矩阵B=,求直线
先在矩阵A,再在矩阵B的对应变换作用下的像的方程.