(本小题满分14分)已知在平面直角坐标系xoy中的一个椭圆,它的中心在原。
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;
(3)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值。
(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,AB
CD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD
平面CBED,如图(乙).
(1)求证:平面FHG//平面ABE;
(2)记表示三棱锥B-ACE 的体积,求
的最大值;
(3)当取得最大值时,求二面角D-AB-C的余弦值.
(本小题满分12分)已知函数,其中
,
相邻两对称轴间的距离不小于
(Ⅰ)求的取值范围;
(Ⅱ)在的面积.
(本小题满分12分)已知是三角形
三内角,向量
,且
(1)求角;(2)若
,求
。
(本小题满分12分)已知y=是二次函数,且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函数的单调递减区间及值域..
(本小题满分12分)在锐角中,角
所对边分别为
,已知
.
(Ⅰ)求的值;
(Ⅱ)若,求
的值.