游客
题文

(10分)

问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类别应用
(1)已知小丽和小颖购买同一种商品的平均价格分别为元/千克和元/千克(a、b是正数,且a≠b),试比较小丽和小颖所购买商品的平均价格的高低.
(2)试比较图2和图3中两个矩形周长M1、N1的大小(b>c).
联系拓广
小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b>a>c>0),售货员分别可按图5、图6、图7三种方法进行捆绑,吻哪种方法用绳最短?哪种方法用绳最长?请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

解不等式组 x + 4 3 , 6 x 5 x + 3 请结合题意填空,完成本题的解答.

(Ⅰ)解不等式①,得   

(Ⅱ)解不等式②,得   

(Ⅲ)把不等式①和②的解集在数轴上表示出来:

(Ⅳ)原不等式组的解集为   

如图,抛物线 y = ( x + 1 ) ( x - a ) (其中 a > 1 ) x 轴交于 A B 两点,交 y 轴于点 C

(1)写出 OCA 的度数和线段 AB 的长(用 a 表示);

(2)若点 D ΔABC 的外心,且 ΔBCD ΔACO 的周长之比为 10 : 4 ,求此抛物线的解析式;

(3)在(2)的前提下,试探究抛物线 y = ( x + 1 ) ( x - a ) 上是否存在一点 P ,使得 CAP = DBA ?若存在,求出点 P 的坐标;若不存在,请说明理由.

如图,点 D 在以 AB 为直径的 O 上,过 D O 的切线交 AB 延长线于点 C AE CD 于点 E ,交 O 于点 F ,连接 AD FD

(1)求证: DAE = DAC

(2)求证: DF AC = AD DC

(3)若 sin C = 1 4 AD = 4 10 ,求 EF 的长.

函数图象是研究函数的重要工具。探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程。请结合已有的学习经验,画出函数 y = - 8 x x 2 + 4 的图象,并探究其性质.

列表如下:

x

- 4

- 3

- 2

- 1

0

1

2

3

4

y

8 5

24 13

a

8 5

0

b

- 2

- 24 13

- 8 5

(1)写出表中 a b 的值,并在平面直角坐标系中画出该函数的图象;

(2)观察函数 y = - 8 x x 2 + 4 的图象,判断下列关于该函数性质的命题:

①当 - 2 x 2 时,函数图象关于直线 y = x 对称;

x = 2 时,函数有最小值,最小值为 - 2

- 1 < x < 1 时,函数 y 的值随 x 的增大而减小.

其中正确的是   .(请写出所有正确命题的番号)

(3)结合图象,请写出不等式 8 x x 2 + 4 > x 的解集   

为了弘扬爱国主义精神,某校组织了"共和国成就"知识竞赛,将成绩分为: A (优秀)、 B (良好)、 C (合格)、 D (不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如图统计图.

(1)本次抽样调查的样本容量是   ,请补全条形统计图;

(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;

(3)该校共有2000名学生,请你估计该校竞赛成绩"优秀"的学生人数.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号