中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.济南市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内).
(1) 求此次拦查中醉酒驾车的人数;
(2) 从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,
再从抽取的8人中任取3人,求3人中含有醉酒驾车人数x的分布列和期望.
如图,已知正三棱柱中,
,
,
为
上的动点.
(1)求五面体的体积;
(2)当在何处时,
平面
,请说明理由;
(3)当平面
时,求证:平面
平面
.
某数学老师对本校2013届高三学生某次联考的数学成绩进行分析,按1:50进行分层抽样抽取的20名学生的成绩进行分析,分数用茎叶图记录如下:
得到频率分步表如下:
(1)求表中的值,并估计这次考试全校学生数学成绩及格率(分数在
范围为及格);
(2)从大于等于110分的学生中随机选2名学生得分,求2名学生的平均得分大于等于130分的概率.
已知数列中,
,
.
(1)证明数列是等比数列,并求数列
的通项公式;
(2)记,求数列
的前
项和
.
已知点,曲线
上的动点
满足
,定点
,由曲线
外一点
向曲线
引切线
,切点为
,且满足
.
(1)求线段长的最小值;
(2)若以为圆心所作的圆
与曲线
有公共点,试求半径取最小值时圆
的标准方程.
定义在上的函数
对任意
都有
(
为常数).
(1)判断为何值时
为奇函数,并证明;
(2)设,
是
上的增函数,且
,若不等式
对任意
恒成立,求实数
的取值范围.