中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.济南市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内).
(1) 求此次拦查中醉酒驾车的人数;
(2) 从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,
再从抽取的8人中任取3人,求3人中含有醉酒驾车人数x的分布列和期望.
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为
,且不同种产品是否受欢迎相互独立.记
为公司向市场投放三种新型产品受欢迎的数量,其分布列为
![]() |
(Ⅰ)求该公司至少有一种产品受欢迎的概率;
(Ⅱ)求的值;
(Ⅲ)求数学期望.
如图,四棱锥的底面
是矩形,
,且侧面
是正三角形,平面
平面
,
(Ⅰ)求证:;
(Ⅱ)在棱上是否存在一点
,使得二面角
的大小为45°.若存在,试求
的值,若不存在,请说明理由.
已知函数.
(1)若,求
的值;
(2)设△三内角
所对边分别为
且
,求
在
上的值域.
设对于任意实数x,不等式恒成立.
(1)求m的取值范围;
(2)当m取最大值时,解关于x的不等式:
已知极点与坐标原点O重合,极轴与x轴非负半轴重合,M是曲线C: =4sin
上任一点,点P满足
.设点P的轨迹为曲线Q.
(1)求曲线Q的方程;
(2)设曲线Q与直线(t为参数)相交于A、B两点,且|AB|=4.求实数a.