(本小题满分12分)已知抛物线方程,点为其焦点,点在抛物线的内部,设点是抛物线上的任意一点,的最小值为4.(1)求抛物线的方程;(2)过点作直线与抛物线交于不同两点、,与轴交于点,且,试判断是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.
如图,已知空间四边形中,,是的中点. 求证:(1)平面CDE; (2)平面平面 (3)若G为的重心,试在线段AE上确定一点F, 使得GF//平面CDE.
已知复数,,且. (1)若且,求的值; (2)设=,已知当时,,试求的值.
设函数. (1)解不等式 (2)若关于的不等式的解集不是空集,试求实数的取值范围.
已知曲线为参数),为参数). (1)化的方程为普通方程 (2)若上的点对应的参数为,为上的动点,求中点到直线为参数)距离的最小值.
如图,在△中,是的中点,是的中点,的延长线交于. (Ⅰ)求的值; (Ⅱ)若△的面积为, 四边形的面积为,求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号