已知抛物线C的方程为,焦点为F,有一定点
,A在抛物线准线上的射影为H,P为抛物线上一动点.
(1)当|AP|+|PF|取最小值时,求;
(2)如果一椭圆E以O、F为焦点,且过点A,求椭圆E的方程及右准线方程;
(3)设是过点A且垂直于x轴的直线,是否存在直线
,使得
与抛物线C交于两个
不同的点M、N,且MN恰被平分?若存在,求出
的倾斜角
的范围;若不存在,请
说明理由.
如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,点M在线段EC上且不与E、C垂合.
(1)当点M是EC中点时,求证:BM//平面ADEF;
(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M—BDE的体积.
下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.
(Ⅰ)求此人到达当日空气重度污染的概率;
(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望.
已知二次函数的导函数的图像与直线
平行,且
在
处取得极小值
.设
.
(1)若曲线上的点
到点
的距离的最小值为
,求
的值;
(2)如何取值时,函数
存在零点,并求出零点.
已知数列满足:
,
,
(其中
为非零常数,
).
(1)判断数列是不是等比数列?
(2)求;
(3)当时,令
,
为数列
的前
项和,求
.
已知两点、
,点
为坐标平面内的动点,满足
.
(1)求动点的轨迹方程;
(2)若点是动点
的轨迹上的一点,
是
轴上的一动点,试讨论直线
与圆
的位置关系.