(本小题12分)设等差数列的前
项和为
,已知
。
(1)求数列的通项公式;
(2)令,求数列
的前10项和.K
如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.
(1)求证:BE=DE;
(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
如图,直三棱柱ABCA′B′C′,∠BAC=90°,AB=AC=
,AA′=1,点M,N分别为
A′B和B′C′的中点.
(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′MNC的体积.(锥体体积公式V=
Sh,其中S为底面面积,h为高)
如图,在四棱锥PABCD中,底面是边长为2
的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2
,M、N分别为PB、PD的中点.
(1)证明:MN∥平面ABCD;
(2)过点A作AQ⊥PC,垂足为点Q,求二面角AMN
Q的平面角的余弦值.
如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.
求证:(1)平面EFG∥平面ABC;
(2)BC⊥SA.
如图,四棱锥PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点
(1)求证:CE∥平面PAD;
(2)求证:平面EFG⊥平面EMN.