(本小题满分12分)
设为三角形
的三边,求证:
已知椭圆的离心率为
,其左焦点
到点
的距离为
.
(1)求椭圆的方程;
(2)过右焦点的直线与椭圆交于不同的两点
、
,则
内切圆的圆面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
已知数列,
满足
,
,且对任意的正整数
,
和
均成等比数列.
(1)求、
的值;
(2)证明:和
均成等比数列;
(3)是否存在唯一正整数,使得
恒成立?证明你的结论.
如图,正方形所在平面与圆
所在的平面相交于
,线段
为圆
的弦,
垂直于圆
所在的平面,垂足
为圆
上异于
、
的点,设正方形
的边长为
,且
.
(1)求证:平面平面
;
(2)若异面直线与
所成的角为
,
与底面
所成角为
,二面角
所成角为
,求证
雾霾大气严重影响人们生活,某科技公司拟投资开发新型节能环保产品,策划部制定投资计划时,不仅要考虑可能获得的盈利,而且还要考虑可能出现的亏损,经过市场调查,公司打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和60%,可能的最大亏损率分别为20%和10%,投资人计划投资金额不超过10万元要求确保可能的资金亏损不超过1.6万元.
(1)若投资人用万元投资甲项目,
万元投资乙项目,试写出
、
所满足的条件,并在直角坐标系内做出表示
、
范围的图形;
(2)根据(1)的规划,投资公司对甲、乙两个项目投资多少万元,才能是可能的盈利最大?
已知函数在一个周期上的系列对应值如下表:
(1)求的表达式;
(2)若锐角的三个内角
、
、
所对的边分别为
、
、
,且满足
,
,
,求边长
的值.