如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D
(1)求证:AP=AC;
(2)若AC=3,求PC的长.
(1)计算: ;
(2)如图,在 中, , , 平分 交 于点 , 于点 ,求证: .
甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元. 乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元. |
说明:①汽车数量为整数;②月利润 月租车费 月维护费;③两公司月利润差 月利润较高公司的利润 月利润较低公司的利润.
在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
(1)当每个公司租出的汽车为10辆时,甲公司的月利润是 48000 元;当每个公司租出的汽车为 辆时,两公司的月利润相等;
(2)求两公司月利润差的最大值;
(3)甲公司热心公益事业,每租出1辆汽车捐出 元 给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求 的取值范围.
在一次数学探究活动中,李老师设计了一份活动单:
已知线段 ,使用作图工具作 ,尝试操作后思考: (1)这样的点 唯一吗? (2)点 的位置有什么特征?你有什么感悟? |
“追梦”学习小组通过操作、观察、讨论后汇报:点 的位置不唯一,它在以 为弦的圆弧上(点 、 除外), .小华同学画出了符合要求的一条圆弧(如图 .
(1)小华同学提出了下列问题,请你帮助解决.
①该弧所在圆的半径长为 ;
② 面积的最大值为 ;
(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为 ,请你根据图1证明 .
(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形 的边长 , ,点 在直线 的左侧,且 .
①线段 长的最小值为 ;
②若 ,则线段 长为 .
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 ,与 轴交于点 .
(1) , ;
(2)若点 在该二次函数的图象上,且 ,求点 的坐标;
(3)若点 是该二次函数图象上位于 轴上方的一点,且 ,写出点 的坐标.
如图,四边形 中, , , ,连接 ,以点 为圆心, 长为半径作 ,交 于点 .
(1)试判断 与 的位置关系,并说明理由;
(2)若 , ,求图中阴影部分的面积.