(本小题满分10分)选修4-4:坐标系与参数方程已知曲线。(Ⅰ)将曲线的参数方程化为普通方程;(Ⅱ)若把曲线上各点的坐标经过伸缩变换后得到曲线,求曲线上任意一点到两坐标轴距离之积的最大值.
已知函数,为自然对数的底数. (1)若过点的切线斜率为2,求实数的值; (2)当时,求证:; (3)在区间上恒成立,求实数的取值范围.
已知椭圆上的焦点为,离心率为. (1)求椭圆方程; (2)设过椭圆顶点,斜率为的直线交椭圆于另一点,交轴于点,且,,成等比数列,求的值.
等差数列的前n项和为,且满足,. (1)求数列的通项公式; (2)设,数列的前项和为,求证:.
如图,在正方体中,、、分别是,,的中点. (1)平面 (2)平面.
中内角,,的对边分别为,,,向量,,且. (1)求锐角的大小; (2)如果,求的面积的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号