已知双曲线x2-y2=2若直线n的斜率为2 ,直线n与双曲线相交于A、B两点,线段AB的中点为P,
(1)求点P的坐标(x,y)满足的方程(不要求写出变量的取值范围);
(2)过双曲线的左焦点F1,作倾斜角为的直线m交双曲线于M、N两点,期中
,F2是双曲线的右焦点,求△F2MN的面积S关于倾斜角
的表达式。
如图所示,在正方体中,
为
上的点、
为
的中点.
(Ⅰ)求直线与平面
所成角的正弦值;
(Ⅱ)若直线
//平面
,试确定点
的位置.
已知等差数列的前
项和为
(I)求的值;
(Ⅱ)若,数列
}满足
,求数列
的前
项和.
在中,角
所对的边分别为
,且
.
(1)求的大小;
(2)若,
,求
的面积.
选修4-4 :坐标系与参数方程
已知圆方程为.
(1)求圆心轨迹的参数方程;
(2)点是(1)中曲线
上的动点,求
的取值范围.
已知向量,动点
到定直线
的距离等于
,并且满足
,其中
为坐标原点,
为非负实数.
(1)求动点的轨迹方程
;
(2)若将曲线向左平移一个单位,得曲线
,试判断曲线
为何种类型;
(3)若(2)中曲线为圆锥曲线,其离心率满足
,当
是曲线
的两个焦点时,则圆锥曲线上恒存在点
,使得
成立,求实数
的取值范围.