游客
题文

(本小题满分9分)某校为了了解九年级学生数学测试成绩情况,以九年级(1)
班学生的数学测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:
(说明:A级:108分~120分;B级:102分~107分;C级:72分~101分; D级: 72分以下)
   
(1)补全条形统计图并计算C级学生的人数占全班总人数的百分比;
(2)求出D级所在的扇形圆心角的度数;
(3)该班学生数学测试成绩的中位数落在哪个等级内;
(4)若102分以上(包括102分)为优秀,该校九年级学生共有1500人,请你估计这次考试中数学优秀的学生共有多少人?

科目 数学   题型 解答题   难度 较难
知识点: 统计量的选择
登录免费查看答案和解析
相关试题

先化简,再求值
.其中.
已知A =2a 2-a,B =-5a+1,求当a = 时,3A-2B+1的值。

化简

解下列方程



如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴

求经过A、B、C三点的抛物线的解析式;
当BE经过(1)中抛物线的顶点时,求CF的长;
在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的
周长最小,求出P、Q两点的坐标

问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
已知:多项式M =2a2-a+1 ,N =a2-2a.试比较M与N的大小.
已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边
满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶
点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。
①这样的长方形可以画个;
②所画的长方形中哪个周长最小?为什么?

拓展延伸
已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号