某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).
①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;
②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.
根据以上测量过程及测量数据,请你求出河宽BD是多少米.
如图,EF∥AD,∠1=∠2,∠BAC=70°。求∠AGD.请将解题过程填写完整。
因为EF∥AD,(已知)
所以∠2=_________.()
又因为∠1=∠2,(已知)
所以∠1=∠3.()
所以AB//________.()
所以∠BAC+_______=180°.()
又因为∠BAC=70°,(已知)
所以∠AGD=________.
解不等式组
解方程组:
某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机进货量的一半.电视机与洗衣机的进价和售价如下表:
类别 |
电视机 |
洗衣机 |
进价(元/台) |
1 800 |
1 500 |
售价(元/台) |
2 000 |
1 600 |
计划购进电视机和洗衣机共 100 台,商店最多可筹集资金161 800 元.
(1)请你帮助商店算一算有多少种进货方案(不考虑除进价之外的其他费用);
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得的利润最多?并求出最大的利润(利润=售价-进价).
(1)(2)
( 3 )( 4 ) x2+3x+2