(本小题满分12分)
某网站就观众对2010年春晚小品类节目的喜爱程度进行网上调查,其中持各种态度的人数如下表:
喜爱程度 |
喜欢 |
一般 |
不喜欢 |
人数 |
560 |
240 |
200 |
(1)现用分层抽样的方法从所有参与网上调查的观众中抽取了一个容量为n的样本,已知从不喜欢小品的观众中抽取的人数为5人,则n的值为多少?
(2)在(1)的条件下,若抽取到的5名不喜欢小品的观众中有2名为女性,现将抽取到的5名不喜欢小品的观众看成一个总体 ,从中任选两名观众,求至少有一名为女性观众的概率.
(本小题满分14分)已知函数.
(1)若对
都成立,求
的取值范围;
(2)已知为自然对数的底数,证明:
N
,
.
(本小题满分14分)已知椭圆的中心在坐标原点,两焦点分别为双曲线
的顶点,直线
与椭圆
交于
,
两点,且点
的坐标为
,点
是椭圆
上异于点
,
的任意一点,点
满足
,
,且
,
,
三点不共线.
(1)求椭圆的方程;
(2)求点的轨迹方程;
(3)求面积的最大值及此时点
的坐标.
(本小题满分14分)已知数列的各项均为正数,其前
项和为
,且满足
,
N
.
(1)求的值;
(2)求数列的通项公式;
(3)是否存在正整数, 使
,
,
成等比数列? 若存在, 求
的值; 若不存在, 请说明理由.
(本小题满分14分)如图,在边长为的菱形
中,
,点
,
分别是边
,
的中点,
,沿
将△
翻折到△
,连接
,得到如图的五棱锥
,且
.
(1)求证:平面
;
(2)求二面角的正切值.
(本小题满分12分)袋子中装有大小相同的白球和红球共个,从袋子中任取
个球都是白球的概率为
,每个球被取到的机会均等.现从袋子中每次取
个球,如果取出的是白球则不再放回,设在取得红球之前已取出的白球个数为
.
(1)求袋子中白球的个数;
(2)求的分布列和数学期望.