(本题10分)甲、乙、丙三名射击运动员射中目标的概率分别为(0<a<1),三各射击一次,击中目标的次数记为
。
(Ⅰ)求的分布列;
(Ⅱ)若的值最大,求实数a的取值范围。
(本小题满分10分)选修4-5:不等式选讲
已知函数
(1) 解关于的不等式
;
(2) 若函数的图象恒在函数
图象的上方,求
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
已知直线的参数方程是
,圆C的极坐标方程为
.
(1)求圆心C的直角坐标;
(2)由直线上的点向圆C引切线,求切线长的最小值.
(本小题满分10分)选修4-1:几何证明选讲
如图,⊙的直径
的延长线与弦
的延长线相交于点
,
为⊙
上一点,AE=AC ,
交
于点
,且
,
(Ⅰ)求的长度.
(Ⅱ)若圆F与圆内切,直线PT与圆F切于点T,求线段PT的长度
(本小题满分12分)已知函数
(1)若直线是曲线
的切线,求
的值;
(2)若直线是曲线
的切线,求
的最大值;
(3)设是曲线
上相异三点,其中
求证:
已知椭圆的离心率为
,且过点
,抛物线
的焦点坐标为
.
(1)求椭圆和抛物线
的方程;
(2)若点是直线
上的动点,过点
作抛物线
的两条切线,切点分别是
,直线
交椭圆
于
两点.
(Ⅰ)求证:直线过定点,并求出该定点的坐标;
(Ⅱ)当的面积取最大值时,求直线
的方程.