(本小题满分12分)
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。(Ⅰ)将总费用y表示为x的函数
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用
在正项等比数列中,公比
,
且
和
的等比中项是
.
(1)求数列的通项公式;
(2)若,判断数列
的前
项和
是否存在最大值,若存在,求出使
最大时
的值;若不存在,请说明理由.
如图,在三棱锥中,
和
都是以
为斜边的等腰直角三角形,
分别是
的中点.
(1)证明:平面//平面
;
(2)证明:;
(3)若,求三棱锥
的体积.
汽车是碳排放量比较大的行业之一,某地规定,从2014年开始,将对二氧化碳排放量超过的轻型汽车进行惩罚性征税。检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:
).
经测算得乙品牌轻型汽车二氧化碳排放量的平均值为.
(1)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过的概率是多少?
(2)求表中的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性.
已知函数. 的部分图象如图所示,其中点
是图象的一个最高点.
(1)求函数的解析式;
(2)已知且
,求
.
已知.
(1)若存在单调递减区间,求实数
的取值范围;
(2)若,求证:当
时,
恒成立;
(3)设,证明:
.