甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从
道备选题中一次性抽取
道题独立作答,然后由乙回答剩余
题,每人答对其中
题就停止答题,即闯关成功.已知在
道备选题中,甲能答对其中的
道题,乙答对每道题的概率都是
.
(Ⅰ)求甲、乙至少有一人闯关成功的概率;
(Ⅱ)设甲答对题目的个数为ξ,求ξ的分布列及数学期望.
已知四棱锥
,侧面
底面
,侧面
为等边三角形,底面
为菱形,且
.
(1)求证:
;
(2)若
,求四棱锥
的体积.
(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达
亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为
.

(1)确定
,
,
,
的值,并补全频率分布直方图;
(2)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
①请将列联表补充完整;
| 网龄3年以上 |
网龄不足3年 |
合计 |
|
| 购物金额在2000元以上 |
35 |
||
| 购物金额在2000元以下 |
20 |
||
| 合计 |
100 |
②并据此列联表判断,是否有
%的把握认为网购金额超过2000元与网龄在三年以上有关?
参考数据:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(参考公式:
,其中
)
(本小题满分12分)
的内角
,
,
的对边分别为
,
,
,
,
.
(1)求角
;
(2)若
,求
的面积.
(本小题满分10分)选修4-5:不等式选讲
设函数
,
.
(1)当
时,解不等式
;
(2)画出函数
的图象,根据图象求使
恒成立的实数
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
已知在直角坐标系
中,圆锥曲线
的参数方程为
(
为参数),定点
,
是圆锥曲线
的左、右焦点.
(1)以坐标原点为极点,
轴正半轴为极轴建立极坐标系,求经过点
且平行于直线
的直线
的极坐标方程;
(2)设(1)中直线
与圆锥曲线
交于
两点,求
.