(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为
.
(1)确定,
,
,
的值,并补全频率分布直方图;
(2)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
①请将列联表补充完整;
|
网龄3年以上 |
网龄不足3年 |
合计 |
购物金额在2000元以上 |
35 |
|
|
购物金额在2000元以下 |
|
20 |
|
合计 |
|
|
100 |
②并据此列联表判断,是否有%的把握认为网购金额超过2000元与网龄在三年以上有关?
参考数据:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(参考公式:,其中
)
(本小题满分12分)
已知四棱锥的三视图如下图所示,其中主视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.
是侧棱
上的动点.
(1)求证:
(2)若五点在同一球面上,求该球的体积.
![]() |
|||
![]() |
|||
(本小题满分12分)
已知函数的部分图象如图所示.
(1)求函数的解析式;
(2)令,判断函数
的奇偶性,并说明理由.
(本小题满分14分)已知数列的相邻两项
是关于
的方程
的两实根,且
(1)求证:数列是等比数列;
(2)设是数列
的前
项和,求
;
(3)问是否存在常数,使得
对
都成立,若存在,求出
的取值范围,若不存在,请说明理由。
(本小题满分14分)如图所示,椭圆的离心率为
,且A(0,1)是椭圆C的顶点。
(1)求椭圆C的方程;
(2)过点A作斜率为1的直线,在直线
上求一点M,使得以椭圆C的焦点为焦点,且过点M的双曲线E的实轴最长,并求此双曲线E的方程。
已知是
的导函数,
,且函数
的图象过点(0,-2)。
(1)求函数的表达式;
(2)设,若
在定义域内恒成立,求实数
的取值范围。