如图,已知斜四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD.
(1) 证明:C1C⊥BD;
(2) 当的值为多少时,能使A1C⊥平面C1BD?请给出证明
(本小题满分12分)对某交通要道以往的日车流量(单位:万辆)进行统计,得到如下记录:
日车流量x |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
频率 |
0.05 |
0.25 |
0.35 |
0.25 |
0.10 |
0 |
将日车流量落入各组的频率视为概率,并假设每天的车流量相互独立.
(Ⅰ)求在未来连续3天里,有连续2天的日车流量都不低于10万辆且另1天的日车流量低于5万辆的概率;
(Ⅱ)用X表示在未来3天时间里日车流量不低于10万辆的天数,求X的分布列和数学期望.
(本小题满分12分)如图,在棱长为2的正方体中,点E,F分别是棱AB,BC上的动点,且AE=BF.
(Ⅰ)求证:A1FC1E;
(Ⅱ)当三棱锥的体积取得最大值时,求二面角
的正切值.
(本小题满分12分)已知等差数列{an}的首项为1,前n项和为,且S1,S2,S4成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)记为数列
的前
项和,是否存在正整数n,使得
?若存在,求
的最大值;若不存在,说明理由.
(本小题满分11分)已知函数的在区间
上的最小值为0.
(Ⅰ)求常数a的值;
(Ⅱ)当时,求使
成立的x的集合.
(本小题满分14分)已知函数,其中
为自然对数的底数.
(Ⅰ)求曲线在点
处的切线方程;
(Ⅱ)若对任意,不等式
恒成立,求实数
的取值范围;
(Ⅲ)试探究当时,方程
解的个数,并说明理由.