【改编】(本小题满分10分)
数形结合作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,即“以数解形”;或者借助形的几何直观性来阐明数之间的某种关系,即“以形助数”。 如浙教版九上课本第109页作业题第2题:如图1,已知在△ABC中,∠ACB=900,CD⊥AB,D为垂足。易证得两个结论:(1)AC·BC = AB·CD (2)AC2= AD·AB
(1)请你用数形结合的“以数解形”思想来解:如图2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D为垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的两个根,求AD、MD的长。
(2)请你用数形结合的“以形助数”思想来解:设a、b、c、d都是正数,满足a:b=c:d,且a最大。求证:a+d>b+c(提示:不访设AB=a,CD=d,AC=b,BC=c,构造图1)
某商场出售的A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但是每日耗电量却为0.55度,现将A型冰箱打折出售,问商场至少打几折,消费者购买才合算?(按使用期为10年,每年365天,每度电费按0.40元计算)
某企业生产一种产品,每件成本是400元,销售价为510元,本季度销售300件,为进一步扩大市场,企业决定在降低销售价的同时降低生产成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件成本应降低多少元?
阅读下列材料再解方程:
│x+2│=3,我们可以将x+2视为一个整体,由于绝对值为3的数有两个,所以x+2=3或x+2=-3,解得x=1或-5.
请按照上面解法解方程x-│x+1│=1.
育红学校七年级学生步行到郊外旅行,七(1)班的学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时,前队出发1小时后,乙队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为12千米/时,根据上面的事实提出问题并尝试去解答.
为了庆祝中国足球队首次进入世界杯赛,曙光体育器材厂赠送一批足球给希望中学足球队.若足球队每人领一个少6个球,每两人领一个则余6个球,问这批足球共多少个?小明领到足球后十分高兴,就仔细地研究起足球上的黑白球(如图),结果发现,黑块呈五边形,白色呈六边形,黑白相间在球体上,黑块共12块,问白块有多少块?