(本小题满分14分)已知是定义在上的函数, 其三点, 若点的坐标为,且 在和上有相同的单调性, 在和上有相反的单调性.(1)求 的取值范围;(2)在函数的图象上是否存在一点, 使得 在点的切线斜率为?求出点的坐标;若不存在,说明理由;(3)求的取值范围。
(本小题满分12分)已知数列是首项为且公比不等于的等比数列,是其前项的和,成等差数列. (1)证明:成等比数列; (2)求和:
(本小题满分12分)已知满足不等式,求函数()的最小值.
(本小题满分12分) 在中,,,是角,,的对边,且[ (1)求角的大小; (2)若,求面积的最大值.
已知函数,为实数. (1)当时,判断函数的奇偶性,并说明理由; (2)当时,指出函数的单调区间(不要过程); (3)是否存在实数,使得在闭区间上的最大值为2.若存在,求出的值;若不存在,请说明理由
设函数,常数. (1)若,判断在区间上的单调性,并加以证明; (2)若在区间上的单调递增,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号