(本题10分)2010年9月起,长宁区为推进课程改革,落实“减负增效”,在部分学校六年级实施“阅读领航计划”试点研究.为了解在数学课堂内“阅读”指导对学生学习方法改进的程度,在社会实践阅读活动组织内容的受欢迎程度.在试点学校六年级随机抽取200名学生,对“学习方法改进”情况与“社会实践阅读活动组织内容”受欢迎程度两项作了调查.根据统计数据分别绘制成了下面扇形统计图与条形统计图.
(1)对“学生学习方法改进”程度的调查反馈中回答“显著改进”的学生有多少名?
(2)请将“社会实践阅读活动组织内容”受欢迎程度条形统计图补完整;
(3)若参加“社会实践阅读”试点学校的六年级学生约有1600名,根据上述统计数据,请你估计试点学校对“社会实践阅读活动组织内容”表示非常喜欢、喜欢及比较喜欢的学生共有多少名?
如图,一条公路的转弯处是一段圆弧.
(1)作出所在圆的圆心O;(用直尺和圆规作图,保留作图痕迹,不写作法)
(2)若的中点C到弦AB的距离为20m,AB=80m,求
所在圆的半径.
已知,△ABC在直角坐标平面内,三个顶点的坐标分别为A(-2, 2)、B(-1,0)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC关于y轴的轴对称图形△A1B1C1;
(2)以点O为位似中心,在网格内画出所有符合条件的△A2B2C2,使△A2B2C2与△A1B1C1位似,且位似比为2:1;
(3)求△A1B1C1与△A2B2C2的面积比.
如图,已知点D是△ABC的边AC上的一点,连接BD.∠ABD=∠C,AB=6,AD=4.
(1)求证:△ABD∽△ACB;
(2)求线段CD的长.
解方程
(1)(x-2)2=9;
(2)3x2-1=2 x(配方法);
(3)x2+3 x+1=0;
(4)(x+1)2-6(x+1)+5=0.
在平面直角坐标系xOy中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙ O′交x轴于D点,过点D作DF⊥AE于F.
(1)求OA,OC的长;
(2)求证:DF为⊙ O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.