. (本题满分14分)
设命题p:函数的定义域为R;命题q:
对一切的实数均成立,如果命题“p或q”为真命题,且“p且q”为假命题,求实数a的取值范围。
数列的前
项和为
,
,
,等差数列
满足
,
。
(1)分别求数列,
的通项公式;
(2)若对任意的,
恒成立,求实数
的取值范围。
在中,角
所对的边分别为
,且满足
。
(1)求的值;
(2)若点在双曲线
上,求
的值
(本小题满分14分)
已知函数.
(Ⅰ)若,求曲线
在
处切线的斜率;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意
,均存在
,使得
,求
的取值范围.
(本小题满分12分)
某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:
已知甲、乙两地相距100千米。
(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
(本小题满分12分)
已知