给出下面的数表序列:
其中表n(n="1,2,3" )有n行,第1行的n个数是1,3,5,
2n-1,从第2行起
,每行中的每个数都等
于它肩上的两数之和。
(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);
(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12,记此数列为
求和:
已知向量a=(,
),b=(2,cos2x).
(1)若x∈(0,],试判断a与b能否平行?
(2)若x∈(0,],求函数f(x)=a·b的最小值.
在等差数列和等比数列
中,a1=2b1=2,b6=32,
的前20项
和S20=230.
(Ⅰ)求和
;
(Ⅱ)现分别从和
的前4中各随机抽取一项,写出相应的基本事件,并求所取两项中,满足an>bn的概率.
已知函数,
.
(1)设是函数
的一个零点,求
的值;
(2)求函数的单调递增区间.
设关于的不等式
的解集为
,不等式
的解集为
.
(Ⅰ)当时,求集合
;(Ⅱ)若
,求实数
的取值范围.
已知函数.
(1)讨论函数在定义域内的极值点的个数;
(2)若函数在
处取得极值,对
,
恒成立,
求实数的取值范围.