(本小题满分12分)
已知函数.
(1)求的极值;
(2)若在
上恒成立,求
的取值范围;
(3)已知,且
,求证:
.
已知函数,
(1)求函数的最大值和最小正周期;
(2)设的内角
的对边分别
且
,
,若
求
值.
已知坐标平面内:
,
:
.动点P与
外切与
内切.
(1)求动圆心P的轨迹的方程;
(2)若过D点的斜率为2的直线与曲线交于两点A、B,求AB的长;
(3)过D的动直线与曲线交于A、B两点,线段中点为M,求M的轨迹方程.
设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6, 且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(2)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求
的分布列及期望.
(1)求的展开式中的常数项;
(2)已知,求
的值.
二面角大小为
,半平面
内分别有点A、B,
于C、
于D,已知AC=4、CD=5,DB=6,求线段AB的长.