(本小题满分7分)已知:关于的一元二次方程
.
(1)若方程有两个不相等的实数根,求的取值范围;
(2)在(1)的条件下,求证:无论取何值,抛物线y=
总过
轴上的一个固定点;
(3)若为正整数,且关于
的一元二次方程
有两个不相等的整数根,把抛物线y=
向右平移4个单位长度,求平移后的抛物线的解析式.
已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论;
(3)若⊙O的直径为18,cosB=,求DE的长.
某地菜农张三收获了大白菜20吨,辣椒12吨.现计划租用甲、乙两种货车共8辆将这批蔬菜全部运往外地销售;已知一辆甲种货车可装大白菜4吨和辣椒1吨,一辆乙种货车可装大白菜和辣椒各2吨.
(1)请问张三有几种方案安排甲、乙两种货车可一次性地将水果运到销售地?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则菜农张三应选择哪种方案,使运输费最少?最少运费是多少?
如图,平行于y轴的直尺(一部分)与双曲线(x>0)交于点A、C,与x轴交于点B、D,连结AC.点A、B的刻度分别为5、2(单位:cm),直尺的宽度为2cm,OB=2 cm.
(1)求k的值;
(2)求经过A、C两点的直线解析式.
有4张形状、大小和质地都相同的卡片,正面分别写有字母A、B、C、D和一个算式,背面完全一致.如图所示,将这4张卡片背面向上洗匀,从中随机抽取1张,不放回,接着再随机抽取1张.
(1)请用画树形图或列表法表示出所有的可能结果;(卡片可用A、B、C、D表示)
(2)将“第一张卡片上的算式是正确,同时第二张卡片上的算式是错误”记为事件A,求事件A的概率.
如图,在平行四边形ABCD中,E、F为BC上两点,且BE=CF,AF=DE.
(1)找出图中一对全等的三角形,并证明;
(2)求证:四边形ABCD是矩形.