(本小题满分12分)定义在R上的奇函数有最小正周期4,且
时,
。
⑴求在
上的解析式;
⑵判断在
上的单调性,并给予证明;
⑶当为何值时,关于方程
在
上有实数解?
(理)袋中有同样的球个,其中
个红色,
个黄色,现从中随机且不返回地摸球,每次摸
个,当两种颜色的球都被摸到时,即停止摸球,记随机变量
为此时已摸球的次数,求:.
(1)随机变量的概率分布律;
(2)随机变量的数学期望与方差.
解关于x、y的二元一次方程组,并对解的情况进行讨论.
(本小题12分)
已知函数,
,若函数
在
和
时取得极值
⑴求实数,
的值;
⑵若存在,
,使
成立,求实数
的取值范围.
(本小题13分)
如图,四棱锥的底面为正方形,
平面
,且
,
,
,
分别是线段
,
的中点.
⑴求直线和
所成角的余弦值;
⑵求二面角平面角的余弦值.
(本小题13分)
盒子里有6张大小相同的卡片,上面分别写着1,2,3,4,5,6这6个数.
⑴现从盒子中任取两张卡片,求两张卡片上的数字之和为偶数的概率;
⑵现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶数的卡片则停止抽取,否则继续进行,求抽取次数为多少时其概率小于.