如图,、
分别表示一种白炽灯和一种节能灯的费用
(费用=灯的售价+电费,单位:元)与照明时间
(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样。
(1)根据图象分别求出、
的函数关系式;
(2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程)。
甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换
设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间
(时)的函数图象如图所示.
(1)求甲组加工零件的数量y与时间之间的函数关系式.
(2)当x=2.8时,甲、乙两组共加工零件 件;乙组加工零件总量的值为 .
(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?
如图所示,直线与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处
求(1)点B′、M的坐标
(2)直线AM的解析式。
已知一次函数的图象过点A(3,0),B(—1,2),
(1)求直线AB的解析式;
(2)在给出的直角坐标系中,画出和
的图象,并根据图象写出方程组
的解.
已知:如图,在△ABC中,∠ACB=90°,AC=BC,D是AB的中点,点E在AC上,点F在BC上,且AE=CF.
(1)求证:DE=DF,DE⊥DF;
(2)若AC=4,求四边形DECF面积.
如图,在安大公路(直线BD)的同侧有两个气象信息采集点A、E ,点A、E到安大公路的距离AB=12、 ED=3,两垂足间的距离BD=20.
(1)在线段BD上找一点C,铺设线路AC、CE,要使AC+CE最小,请在图中作出点C;
(2)求出AC+CE的最小值.