游客
题文

(本题11分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)
(1)求抛物线的解析式
(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.
(3)如图3,抛物线上是否存在一点,过点轴的垂线,垂足为,过点作直线,交线段于点,连接,使,若存在,求出点的坐标;若不存在,说明理由.
      图1                       图2                          图3

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知如图:平行四边形ABCD中,,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.

(1)求证:GH∥平面CDE;
(2)若,求四棱锥F-ABCD的体积.

我区高三期末统一测试中某校的数学成绩分组统计如下表:

分组
频数
频率















合计


(1)求出表中的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;

(2)若我区参加本次考试的学生有600人,试估计这次测试中我区成绩在分以上的人数;
(3)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分
的概率.

已知函数.
求函数的最小正周期和值域;
是第二象限角,且,试求的值.

设椭圆的左、右焦点分别为
上顶点为,在轴负半轴上有一点,满足,且

(Ⅰ)求椭圆的离心率;
(Ⅱ)是过三点的圆上的点,到直线的最大距离等于椭圆长轴的长,求椭圆的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于点,求实数的取值范围.

已知数列的前项和为,且
数列满足,且点在直线上.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前项和
(Ⅲ)设,求数列的前项和

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号