游客
题文

(本题11分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)
(1)求抛物线的解析式
(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.
(3)如图3,抛物线上是否存在一点,过点轴的垂线,垂足为,过点作直线,交线段于点,连接,使,若存在,求出点的坐标;若不存在,说明理由.
      图1                       图2                          图3

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知在区间上是增函数
(I)求实数的取值范围;
(II)记实数的取值范围为集合A,且设关于的方程的两个非零实根为
①求的最大值;
②试问:是否存在实数m,使得不等式恒成立?若存在,求m的取值范围;若不存在,请说明理由.

已知函数
(1) 若函数是单调递增函数,求实数的取值范围;
(2)当时,两曲线有公共点P,设曲线在P处的切线分别为,若切线轴围成一个等腰三角形,求P点坐标和的值;
(3)当时,讨论关于的方程的根的个数

已知函数
(1)求函数图象的对称中心;
(2)若,求在区间上的最大值
(3)若数列满足
求数列的通项公式

设计一种正四棱柱形冰箱,它有一个冷冻室和一个冷藏室,冷藏室用两层隔板分为三个抽屉,问:如何设计它的外形尺寸,能使得冰箱体积为定值时,它的表面和三层隔板(包括冷冻室的底层)面积之和S值最小(参考数据:

如图,在五棱锥中,底面
(1)证明:平面
(2)求二面角的余弦值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号