已知函数 (
)(
为自然对数的底数)
(1)求的极值
(2)对于数列,
(
)
① 证明:
② 考察关于正整数的方程
是否有解,并说明理由
汽车制造厂生产A、B、C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆)
轿车A |
轿车B |
轿车C |
|
舒适型 |
100 |
150 |
Z |
标准型 |
300 |
450 |
600 |
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆。
(1)求Z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有一辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2。把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率。
已知直线与圆
相交于点
和点
。
(1)求圆心所在的直线方程; (2)若圆
的半径为1,求圆
的方程。
.提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.
(Ⅰ)当时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)
可以达到最大,并求出最大值(精确到1辆/小时)
已知直线,若以点M(2,0)为圆心的圆与直线
相切与点P,且点P在y轴上。
(1)求圆M的方程;
(2)若点N为定点(-2,0),点A在圆M上运动,求NA中点B的轨迹方程
已知不等式的解集为A,不等式
的解集是B.
(1)求;(2)若不等式
的解集是
求
的解集.