(12分)若存在实数
和
,使得函数
与
对其定义域上的任意实数
分别满足
:
,则称直线
为
与
的“和谐直线”.已知
为自然对数的底数);
(1)求的极值;
(2)函数是否存在和谐直线?若存在,求出此和谐直线方程;若不存在,请说明理由.
(本小题满分12分)
甲、乙两人各抛掷一个六个面分别标有数字的正方体骰子各一次,那么
(I)共有多少种不同的结果?
(II)设甲、乙所抛掷骰子朝上的面的点数、
分别为一个点的横纵坐标
,请列出满足
的所有结果;
(III)在(II)的条件下,求满足的概率.
(本小题满分12分)
已知向量,且
(Ⅰ)求tanA的值;
(Ⅱ)求函数R)的值域.
(本小题满分14分)已知数列是以4为首项的正数数列,双曲线
的一个焦点坐标为
, 且
, 一条渐近线方程为
.
(1)求数列的通项公式;
(2) 试判断: 对一切自然数,不等式
是否恒成立?并说明理由.
(本小题满分14分)2008年奥运会在中国举行,某商场预计2008年从1日起前个月,顾客对某种奥运商品的需求总量
件与月份
的近似关系是
且
,该商品的进价
元与月份
的近似关系是
且
.
(1)写出今年第月的需求量
件与月份
的函数关系式;
(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场
今年销售该商品的月利润预计最大是多少元?
(本小题满分14分)设椭圆的左焦点为
,上顶点为
,过点
与
垂直的直线分别交椭圆
与
轴正半轴于点
,且
. ⑴求椭圆
的离心率;⑵若过
、
、
三点的圆恰好与直线
相切,求椭圆
的方程.